

lecture 1

Functions and Trigonometry

UNIVERSITY OF TWENTE.

academic year: 18-19

lecture

build : November 13, 2018 slides

. 25

This week intro

GELGOOG Coffee Beans Husking Machine

- **1** Section 1.1: functions and their graphs
- **2** Section 1.2: combining and transforming functions
- **3** Section 1.3: trigonometry

About this course

■ Monday : lecture LEC

Tuesday/Thursday: assisted self-tuition AST

Assisted self-tuition:

Basic exercises : **B**

Advanced exercises: A

- Three midterm tests and one resit. See MyTimeTable for date, time and location.
- Test 1: hand written test,
 - Test 2: hybrid test (hand written test and MyLabsPlus test),
 - Test 3: MyLabsPlus test.
- Examples and some exercises with *Mathematica*.
- Course schedule, slides and other materials can be found via the link on the Canvas page Smart Environments (2018-1B), module
 ItE: Introduction to Mathematics and Modeling I, page Lecture slides.

Topics of this course

Nr	Week	Topic	
1	1	Basics: functions, graphs and trigonometry	
2	2	Basics: the inverse; exponential functions and logarithms	
		Midterm test 1	
3	3	Differentiation: definition	
4	4	Differentiation: rules and properties	
5	5	Differentiation: applications	
		Midterm test 2	
6	6	Integration: definition and applications	
7	7	Integration: the fundamental theorem; method of substitution	
8	8	Integration: integration by parts	
		Midterm test 3	
		Resit	

Definition

A function $f \colon D \to C$ is a rule that assigns a unique element f(x) in C to each element x in D.

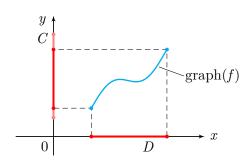
- The set D is the **domain** of f.
- The set C is the **codomain** of f.
- The **range** or **image** of f is the set of all function values f(x).
- If f assigns y to x, then we denote this as y = f(x) or $x \mapsto f(x)$.
- In a diagram:

$$x \longrightarrow f$$
 f

Definition

Let D and C are subsets of \mathbb{R} . The **graph** of a function $f \colon D \to C$ is defined as

$$graph(f) = \{(x, f(x)) \mid x \in D\}.$$



Vertical Line Test

A vertical line intersects the graph of a function in at most one point.

Plotting with Mathematica

Mathematica

■ Defining a function:

$$f[x_]:=1/Sqrt[x^2+1]$$

■ Plotting a function f with domain [a, b]:

$$Plot[f[x],{x,a,b}]$$

Empty notebook (Worksheet 1.nb)

Implicitly defined domains and codomains

Definition

Let the function f be definied by a formula.

- If the domain of f is not defined explicitly, then the domain consists of all numbers x for which f(x) exists.
- If the codomain of f is not defined explicitly, then the codomain is chosen as large as possible.

Example:

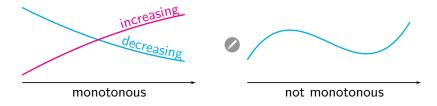
Let
$$f(x) = \sqrt{x-3}$$
.

- The expression $\sqrt{x-3}$ is defined for all x for which $x-3 \ge 0$, hence $\mathrm{Dom}(f) = [3,\infty).$
- The codomain is \mathbb{R} .
- The range is $[0, \infty)$.

Definition

Let $f: I \to \mathbb{R}$ be a function defined on an interval I.

- 1. The function f is increasing on I if for all $x_1, x_2 \in I$ with $x_1 < x_2$: $f(x_1) < f(x_2)$.
- 2. The function f is decreasing on I if for all $x_1, x_2 \in I$ with $x_1 < x_2$: $f(x_1) > f(x_2)$.
 - A function that is decreasing or increasing is called **monotonous**.



Algebraic combinations

Addition:
$$h(x) = f(x) + g(x)$$
 $f + g$

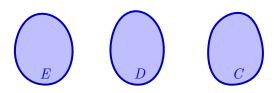
Subtraction:
$$h(x) = f(x) - g(x)$$
 $f - g$

Multiplication:
$$h(x) = f(x)g(x)$$
 $f g$

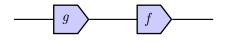
Division:
$$h(x) = \frac{f(x)}{g(x)}$$
 $\frac{f}{g(x)}$

Composition:
$$h(x) = g(f(x))$$
 $g \circ f$

Composition



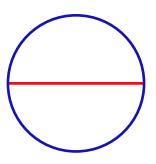
- Let $f \colon D \to C$ and $g \colon E \to D$ be two functions. The domain of f contains the range of g.
- The **composition of** f **and** g is defined as the function $f \circ g \colon E \to C$ that assigns the element f(g(x)) to every $x \in E$.
- lacksquare Pronounce $f \circ g$ as "f after g".



Exercises 2.3

- (1) Define $f(x) = \sqrt{x}$ and g(x) = x + 1. Find $f \circ g$, and $g \circ f$.
- (2) Define $f(x) = \sqrt{x-1}$ and $g(x) = x^2 + 2$. Find the domains and the ranges of f, g, $f \circ g$ and $g \circ f$.

The number π

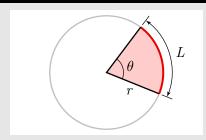


$$\pi = \frac{\mathsf{circumference}}{\mathsf{diameter}}$$

 $\pi \approx 3.141592653589793238462643383279502884197169399375105820\dots$

Radians

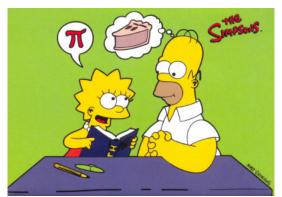
Theorem



In a sector, the length of the arc is equal to the product of the angle of the sector (measured in radians) and the radius of the circle.

$$L = r\theta$$

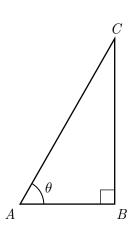
- The **radian** is a unit for measuring angles.
- \blacksquare One radian is approximately 57.3 degrees.
- \blacksquare A full circle is 2π radians.



The Simpsons, (TM) Twentieth Century Fox

Sine, cosine and tangent for acute angles

Triangle ABC is rectangular $(\angle ABC = \frac{\pi}{2})$, angle at A is acute $(0 < \theta < \frac{\pi}{2})$.



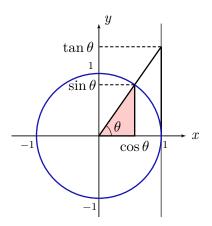
$$\cos\theta = \frac{AB}{AC},$$

$$\sin\theta = \frac{BC}{AC},$$

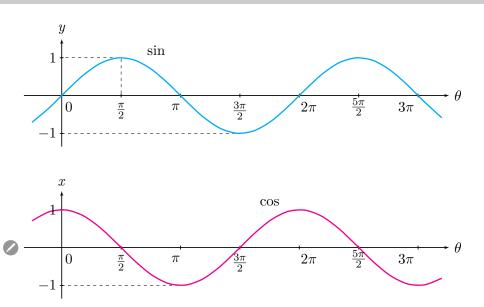
$$\tan \theta = \frac{BC}{AB} = \frac{\frac{BC}{AC}}{\frac{AB}{AC}} = \frac{\sin \theta}{\cos \theta}.$$

Sine and cosine for arbitrary angles

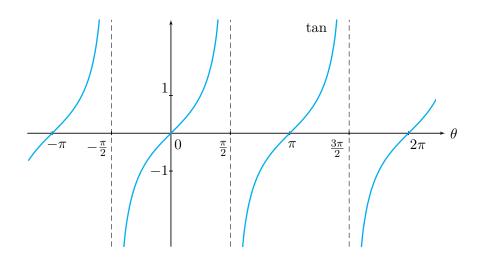
For arbitrary angles, the sine, cosine are defined with the **unit circle**: the circle with center (0,0) and radius 1.



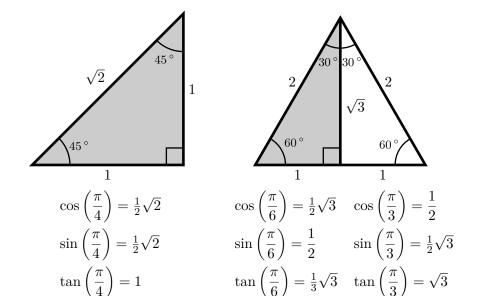
Graphs of sine and cosine



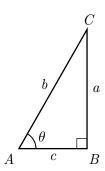
Graph of the tangent



Sine, cosine and tangent of special angles



Pythagoras' theorem



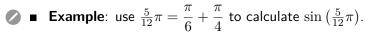
$$\cos^2 \theta + \sin^2 \theta =$$

Theorem

For arbitrary $\alpha, \beta \in \mathbb{R}$ we have

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta,$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta.$$



Difference rule for sine and cosine

Theorem

For arbitrary $\alpha, \beta \in \mathbb{R}$ we have

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta,$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta.$$

■ We prove the first equation:

$$\sin(\alpha - \beta) = \sin(\alpha + (-\beta))$$
$$= \sin\alpha\cos(-\beta) + \cos\alpha\sin(-\beta)$$
$$= \sin\alpha\cos\beta - \cos\alpha\sin\beta.$$

Theorem

For arbitrary $\alpha \in \mathbb{R}$ we have

$$\sin(2\alpha) = 2\sin\alpha\cos\alpha,$$

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha.$$

Overview

Periodicity	$\sin(\alpha + 2\pi) = \sin \alpha \text{ and } \sin(\alpha + \pi) = -\sin \alpha$ $\cos(\alpha + 2\pi) = \cos \alpha \text{ and } \cos(\alpha + \pi) = -\cos \alpha$
Symmetry	$\sin(-\alpha) = -\sin \alpha$ $\cos(-\alpha) = \cos \alpha$
Congruence	$\sin\left(\alpha + \frac{\pi}{2}\right) = \cos\alpha \text{and } \sin\left(\alpha - \frac{\pi}{2}\right) = -\cos\alpha$ $\cos\left(\alpha + \frac{\pi}{2}\right) = -\sin\alpha \text{and } \cos\left(\alpha - \frac{\pi}{2}\right) = \sin\alpha$
Sum formulas	$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
Difference formulas	$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
Doubling formulas	$\sin(2\alpha) = 2\sin\alpha\cos\alpha \qquad \qquad \sin^2\left(\frac{1}{2}\alpha\right) = \frac{1}{2} - \frac{1}{2}\cos\alpha$ $\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha \qquad \cos^2\left(\frac{1}{2}\alpha\right) = \frac{1}{2} + \frac{1}{2}\cos\alpha$
Pythagoras' thm	$\cos^2 \alpha + \sin^2 \alpha = 1$

- (1) a) Use $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$ to calculate $\cos\left(\frac{\pi}{12}\right)$.
 - b) Calculate $\sin\left(\frac{\pi}{12}\right)$.
 - c) Using the doubling formulas, check the results of a) and b).
- (2) Prove the doubling formulas for sine and cosine.